Recycled factory heat benefits industries and the environment

2022-09-03 10:23:02 By : Ms. Shelly Xu

Click here to sign in with or

by European Science Communication Institute (ESCI)

Industrial processes account for more than a fourth of Europe's primary energy consumption and produce a tremendous amount of heat. EU funded research is closing the circle with novel systems that recover waste heat and return it for reuse in industrial process lines.

Most process heat is lost to the environment as exhaust or discharge streams. Recovering and reusing this heat reduces energy consumption, emissions and pollutants. It enables industries to reduce costs, meet regulations and improve their corporate images with broader impacts on competitiveness. One of the greatest challenges is dealing with the immense variety of exhaust temperatures and constituents, which makes it difficult to use off-the-shelf heat exchangers. The EU-funded ETEKINA project has developed novel tailor-made heat pipe heat exchangers (HPHEs) successfully piloted in the ceramics, steel and aluminum industries.

A broad design space meets the needs of complex exhaust streams

Heat pipes are tubes sealed at both ends and containing a working fluid at saturation, meaning any increase in temperature will cause it to vaporize. They are used for heat management in applications from computers to satellites and spacecraft. In an HPHE, the heat pipes are installed in bundles attached to a plate and placed in a casement. A heat source such as exhaust gas flows into the lower section. The working fluid vaporizes and rises in the pipes, where a heat sink such as cool air flows into the top part of the shell and absorbs the heat. The enclosed structure minimizes loss while the plate minimizes cross-contamination between the exhaust gas and the air. HPHEs require smaller surface areas for greater heat transfer relative to conventional approaches. This makes them very efficient and mitigates fouling. The challenge is choosing the parameters such that the greatest possible heat is recovered from complex waste streams. There are so many parameters, including the number, diameter, length and material of the heat pipes; their assembled configuration; and the working fluid.

Given the immense parameter space, computational fluid dynamics and transient system simulation (TRNSYS) modeling were developed to help scientists design bespoke HPHEs for three industrial applications. For example, the crossflow, finned, fouling resistant HPHE (the fins increase surface area to augment heat transfer) designed to recover waste heat from a ceramics roller hearth kiln was the first ever in this configuration applied in the ceramics industry. The heat pipe shells were made of carbon steel and water was the working fluid. "We have exceeded the project's target of a minimum of 40 % waste heat recovery from exhaust streams. Our HPHEs are also much more compact than conventional heat exchangers, saving valuable factory space. In addition to their efficiency, which lowers costs and emission, they also have a short return on investment," says Hussam Jouhara of Brunel University London and technical and scientific coordinator of the ETEKINA project. The systems successfully recovered heat with no cross-contamination and funneled it back to the factory to be used in other processes. The HPHE concept developed in the context of ETEKINA is highly scalable and can be adapted to any type of industrial exhaust over a large temperature range and for a variety of heat sinks, including air, water, and oil. A novel replicability tool will help quickly assess the waste heat recovery potential of future customers. Explore further Scientists use sintered porous media to build compact, efficient heat exchangers Provided by European Science Communication Institute (ESCI) Citation: Recycled factory heat benefits industries and the environment (2021, November 30) retrieved 3 September 2022 from https://techxplore.com/news/2021-11-recycled-factory-benefits-industries-environment.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Tech Xplore in any form.

Daily science news on research developments and the latest scientific innovations

Medical research advances and health news

The most comprehensive sci-tech news coverage on the web

This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.